metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Heng-Shan Wang,^a Ling Huang,^a Zhen-Feng Chen,^a* Xian-Wen Wang,^a Jian Zhou,^a Shao-Ming Shi,^a Hong Liang^a and Kai-Bei Yu^b

^aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ^bAnalysis and Test Center, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China

Correspondence e-mail: chenzfgxnu@yahoo.com

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.035 wR factor = 0.092 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 ${\rm \textcircled{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis(pyridine-2-carbaldehyde thiosemicarbazonato)cobalt(III) perchlorate

In the crystal structure of the title complex, $[Co(C_7H_7-N_4S_2)_2]ClO_4$, which was synthesized solvothermally from cobalt diperchlorate and pyridine-2-carbaldehyde thiosemicarbazone, the two planar thiosemicarbazone ligands are aligned perpendicular to each other. The Co atom is octahedrally coordinated by the S, imino N and pyridinyl N atoms of each ligand. The cation interacts with the perchlorate counterion *via* hydrogen bonds.

Comment

The Schiff base pyridine-2-carbaldehyde thiosemicarbazone and its metal complexes have been extensively investigated, because these compounds exhibit antibacterial, antitumour and antileukaemic activity *in vitro* and *in vivo* (Antholine & Taketa, 1982; Chattopadhyay *et al.*, 1997; García-Tojal *et al.*, 2001; Kovala-Demertzi *et al.*, 1999). Bamgboye & Bamgboye (1985) have reported cobalt(III) complexes of the type $[Co(L)_2]X$ (where X is Cl, SCN or N₃). Their work is extended with the present Co^{III} perchlorate, (I) (Fig. 1).

The two thiosemicarbazone ligands in (I) are planar and the coordinating atoms of each ligand occupy a meridional plane, binding to the metal atom through the S, imino N and pyridyl N atoms. The Co/N1/C5/C6/N2/N3/C7/S1 and Co/N5/C12/C13/ N6/N7/C14/S2 planes are nearly perpendicular to each other [dihedral angle 88.96 (3)°]. The perchlorate counterion in (I) is not involved in coordination, as was observed in the SCN analogue (García-Tojal *et al.*, 2001). The pyridine-2-carbaldehyde thiosemicarbazonate ligands possess an *E* configuration with respect to the C–N azomethine double bond.

The Co-S and Co-N bond distances in (I) compare well with the values found for $[Co(L)_2](SCN)$ (García-Tojal *et al.*, 2001) and $[Co(L)_2](SCN) \cdot H_2O$ (Chattopadhyay *et al.*, 1997). The bond dimensions of the deprotonated ligand in (I) are not significantly different from those of the free ligand (Byushkin *et al.*, 1987), except that the C-S bonds $[C7-S1\ 1.733\ (3)$ and C14-S2 1.736 (3) Å] are longer than that found in the parent ligand $[C7-S1\ 1.698\ (3)$ Å]. Received 16 February 2004 Accepted 2 March 2004 Online 13 March 2004

 $D_x = 1.689 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 30 reflections $\theta = 3.6-14.4^{\circ}$ $\mu = 1.22 \text{ mm}^{-1}$ T = 296 (2) KBlock, red

 $0.30 \times 0.26 \times 0.20 \text{ mm}$

 $R_{\rm int} = 0.015$

 $\theta_{\rm max} = 25.5^{\circ}$

 $h = 0 \rightarrow 10$

 $k = -11 \rightarrow 11$

 $l=-15\rightarrow14$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

 $\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

(Sheldrick, 1997) Extinction coefficient: 0.0029 (9)

3 standard reflections

every 97 reflections

intensity decay: 3.5%

 $w = 1/[\sigma^2(F_o^2) + (0.0507P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Z = 2

Figure 1

A view of the cation and anion of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Intermolecular hydrogen bonds (Table 2) lead to the formation of a two-dimensional network in the structure of (I) (Fig. 2).

Experimental

The ligand was prepared using the method described by Chattopadhyay & Ghosh (1989). A single crystal of (I) suitable for X-ray crystallographic analysis was obtained by solvothermal reaction of $Co(ClO_4) \cdot 6H_2O$ with the ligand. Cobalt perchlorate hexahydrate (0.1 mmol), the ligand (0.2 mmol), methanol (0.5 ml) and ethanol (0.5 ml) were placed in a 20 ml Pyrex tube. The tube was cooled with liquid N₂ and the air inside it was evacuated. It was then sealed and heated at 343 K for 1 d to yield (I).

Crystal data

$Co(C_7H_7N_4S_2)_2$ ClO ₄
$M_r = 516.83$
Triclinic, P1
a = 8.568 (1) Å
b = 10.352(1) Å
c = 12.440(2) Å
$\alpha = 103.73 \ (1)^{\circ}$
$\beta = 102.42 \ (1)^{\circ}$
$\gamma = 100.16 \ (1)^{\circ}$
V = 1016.3 (3) Å ³

Data collection

Siemens P4 diffractometer ω scans Absorption correction: empirical via ψ scan (North et al., 1968) $T_{\min} = 0.690, T_{\max} = 0.783$ 4144 measured reflections 3735 independent reflections 2937 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.092$ S = 1.053735 reflections 288 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Co-N1	1,957 (2)	Co-N6	1.883 (2)
Co-N2	1.887 (2)	Co-S1	2.2176 (10)
Co-N5	1.966 (2)	Co-S2	2.2239 (10)
N1-Co-N2	82,90 (10)	$N^2 - C_0 - S^1$	85 81 (8)
N1-Co-N5	90.29 (10)	N2-Co-S2	95.66 (8)
N1-Co-N6	99.41 (10)	N5-Co-N6	82.91 (10)
N1-Co-S1	168.68 (7)	N5-Co-S1	91.64 (7)
N1-Co-S2	89.46 (7)	N5-Co-S2	168.23 (7)
N2-Co-N5	95.99 (10)	N6-Co-S1	91.89(7)
N2-Co-N6	177.43 (10)	N6-Co-S2	85.52 (8)

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4 - H4B \cdot \cdot \cdot N3^{i}$	0.86(1)	2.11 (1)	2.959 (4)	171 (4)
$N4-H4A\cdots O4^{ii}$	0.86(1)	2.24 (2)	3.024 (5)	151 (3)
N8−H8A···O1 ⁱⁱⁱ	0.86(1)	2.17 (1)	3.021 (4)	175 (3)
$C1 - H1 \cdot \cdot \cdot N7^{iv}$	0.93	2.55	3.460 (4)	166
$C6-H6\cdots S2^{v}$	0.93	2.89	3.679 (3)	144
Commentation and and (i)	2 1 1	(::) 1	(:::) 1 2	

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 + x, y, z; (iii) 1 - x, 2 - y, 2 - z; (iv) 1 - x, 1 - y, 2 - z; (v) 1 - x, 1 - y, 1 - z.

H atoms bound to C atoms were positioned geometrically and refined as riding $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)]$. H atoms bound to N atoms were located in a difference map and refined, subject to a distance restraint of 0.86 (1) Å.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine

structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1994); software used to prepare material for publication: *SHELXTL*.

The authors thank the Youth Science Foundation of Guangxi, the Natural Science Foundation of Guangxi Autonomous Region, the Project of the One-Hundred Persons Plan of the Guangxi Universities, and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Chinese Ministry of Education.

References

- Antholine, W. & Taketa, F. (1982). J. Inorg. Biochem. 16, 145-149.
- Bamgboye, T. T. & Bamgboye, O. A. (1985). *Inorg. Chim. Acta*, 105, 223–226.
 Byushkin, V. N., Chumakov, Y. M., Samus, N. M. & Baka, I. O. (1987). *Zh. Strukt. Khim.* 28, 140–141.
- Chattopadhyay, S. K., Banerjee, T., Rouchoudhury, P., Mak, T. C. W. & Ghosh, S. (1997). *Transition Met. Chem.* 22, 216–219.
- Chattopadhyay, S. K. & Ghosh, S. (1989). Inorg. Chim. Acta, 163, 245-253.
- García-Tojal, J., García-Orad, G., Díaz, A. A., Serra, J. L., Urtiaga, M. K., Arriortua, M. I. & Rojo, T. (2001). J. Inorg. Biochem. 84, 271–248.
- Kovala-Demertzi, D., Miller, J. R., Kourkoumelis, N., Hadjikakou, S. K. & Demertzis, M. A. (1999). *Polyhedron*, 18, 1005–1013.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XSCANS (Version 2.10b) and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.